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1. INTRODUCTION

The analysis of particle trajectories in blast waves from dipole
explosions has been described by Dewey et al (1977a, 1977b, 1978a, and
1978b). The experiments in which particle trajectory measurements were
made, referred to as DIPOLE WEST Shots 8, 9, 10 and 11, were designed
to provide information on the interaction of spherical blast waves with
real and ideal reflecting surfaces. The blast wave interactions were
obtained by the simultaneous detonation of two identical 490-kg spheri­
cal Pentolite charges placed one above the other such that the distance
between the charges was equal to twice the height of the lower charge
above the ground surface.

Two different
of ground surface.
Shots 8 and 11 and
ground surface was
ground surface was

charge heights were used over two different types
The lower charge was 25 feet above the ground in

15 feet in Shots 9 and 10. For Shots 8 and 9 the
relatively smooth, and for Shots 10 and 11 the
roughened by ploughing.

Two photogrammetrical studies were made in each of the four experi­
ments. One study permitted a calculation of the shock front trajec­
tories and velocities, and subsequently a determination of the physical
properties immediately behind the shocks (Dewey et aI, 1975). The
other study involved the high-speed photography of an array of smoke
puffs, which permitted the determination of the particle trajectories
within the blast waves. These trajectories were analyzed to provide
the space and time variations of particle velocity, gas density, hydro­
static overpressure, dynamic pressure and total pressure within the
waves.

This report presents the energy densities within the blast waves
of Shot 11, computed using the particle trajectory data obtained as de­
scribed above. Shot 11 was chosen for this initial study of energy
density because of the charge positions and the ground surface which
were used. The charge positions were such that a larger amount of data
was obtained for the primary, spherical blast wave from the lower of
the two charges than was obtained with the closer charge spacing of
Shots 9 and 10.

The ground surface for Shot 11 was rough, and the strength of the
Mach stem shock over the rough ground surface was found to be signifi­
cantly less than that of the Mach stem shock at the interaction plane
between the two charges, and less than that of the Mach stem shock
over the smooth ground surface of Shot 8. This difference in strength
is presumably due to energy losses and redistribution over the rough
ground. The more extensive smoke puff grid used for Shot 11 yielded
nearly twice the amount of data in the Mach wave as was obtained for
Shot 10, which also used a rough ground surface.

A complete description of DIPOLE WEST Shot 11 and the photogram­
metric measurements made can be found in Dewey et aI, 1975, 1977a,
1977b, 1978a, and 1978b.
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2. CALCULATION OF ENERGY DENSITY

The available energy per unit volume at a point in a blast wave
may be computed using the following equation:

(1)

where P is the hydrostatic pressure of the gas, P the ambient hydro-a
static pressure before the arrival of the blast wave, p the gas den­
sity, u the velocity of the gas, and y the ratio of specific heats
for the gas. The parameters P, P and u vary with both position
and time.

All of the calculations described in this report were made using
data which were scaled to I-kg charges detonated in a standard atmos­
phere. The values of the hydrostatic pressure difference (P - P )a
were computed using the hydrostatic overpressure ratios obtained from
particle trajectory analysis multiplied by the standard pressure,
Pa; 101.324 kPa. Values of gas density, p, and particle velocity, u,

may be obtained by multiplying the density ratios and particle velocity
Mach numbers obtained from the particle trajectory analysis by the

standard density Da ; 1.225 kg/m 3 and the standard sound speed

C ; 340.292 .m/s, respectively. In fact, since dynamic pressure ratiosa
(y/2) (P/Da 1 (u/Cal 2 had already been computed as part of the particle

trajectory analysis, the second term in equation (1) was calculated by

multiplying the dynamic pressure ratio by DaCa
2/y A value of 1.401

was used for y assuming that the shock waves were relatively weak and
thus produced no real gas effects.

Energy density values computed in the above manner were divided
by 10 6 to have units of Joules per cubic centimeter. As computed,
they measure the available energy above the internal energy of the am­
bient air. Integrated over the entire blast wave, the total energy
thus measured should equal the energy yield of the charge in megaJoules
when the distance coordinate is measured in meters. Since the results
of the particle trajectory analysis were scaled to a standard charge
weight and standard atmospheric conditions, the energy densities pre­
sented in this report describe the case of two I-kg charges detonated
in a standard atmosphere at sea level at 15°C.

To obtain results describing the original event, DIPOLE WEST Shot
11, the distance values presented in this report should be mUltiplied
by 8.0730, and the time values by 8.5933. The values of energy density
do not require scaling. Energy data are presented in this report as
functions of either radial position or position along a line, at fixed
times. The data can, on request, also be given as energy density
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contours over a regular, two-dimensional Eulerian grid at specified
times, or as energy density time histories at specified positions.

3. THEORETICAL RESULT FOR A SPHERICAL WAVE FROM TNT (BRODE)

To validate the equation used to compute energy density (equation
ll) in the preceding section) and to have standard curves against which
to compare experimentally determined energy density profiles, a set of
energy density versus distance curves was prepared using data computed
theoretically by Brode (1957) for TNT. Brode's calculation produced
curves showing particle velocity Mach number, S; hydrostatic pressure
ratio, 'IT, and gas density ratio, n, as functions of reduced radius,
A, at various reduced times, '[, for a spherical TNT blast wave in

a standard atmosphere (sea level) at O°C.

Curves of energy density versus distance from charge center were
computed using Brode's results in the following equation:

E =_1_ ('IT-l)P +~nD (SCO)2,
y -1 0 0

(2)

where Po, Do and Co are the ambient values of atmospheric pressure,
density and sound speed used by Brode, which are slightly different
from the values Pa , Da and Ca given in the previous section. Again,
a value of 1.4 was assumed for y. A value of 1 em was chosen for
Brode's scaling factor, a, ai1.d the computed energy density functions
were integrated over the full sphere of the blast wave at selected
times, using

where R is the primary shock radius. Results of the integrations are
given below.

Brode I S Reduced
time value, '[

0.08577
0.12216
0.14793
0.21564

Integrated Energy
ETOT ' Joules

0.08169
0.07771
0.08576
0.06761

mean = 0.0782 J

Since Brode's scaling factor is defined by a 3 = WIPo ' where W

is the total energy released by the charge, choosing a value of 1 em
for the scaling factor should have been equivalent to setting the energy
yield of the charge in Brode's calculation at W = a 3Po = 0.1014 J.

9



It is not clear that this figure is the one to expect from the integra­
tions described above, however, as Brode arbitrarily added a fixed
amount of energy in his equation of state for TNT to overcome difficul­
ties he had in reconciling the integral of that equation to the total
energies expected under various initial and limiting conditions.

In order to validate the equation used to compute energy densities
for this report, therefore, a second approach was taken. A scaling
factor of (l. = 3.966 m was applied to Brode's reduced radius values,
A, to obtain energy results for a I-kg charge in a standard atmos­

phere at 15°C. This scaling factor was computed using a factor of
10 feet derived empirically by Dewey (1964).

The scaling factor of 10 feet was found to give the best agreement
between Brode's computed peak overpressure-versus-distance relationship
and similar values for TNT, which have been measured experimentally and
scaled to a l-lb charge weight in Brode's standard atmosphere. This
factor of 10 feet was converted to meters and then mUltiplied by,. .

12.20462 to convert from 1 lb to 1 kg, then by the cube root of the
ratio Po/Pa to convert from Brode's standard atmosphere (DoC) to the
standard atmosphere used in this report (15°C). Brode's reduced time
values, t , were scaled using this same factor, divided by the stan­
dard sound speed at 15°C, then multiplied by 1000 to obtain real times,
t, in milliseconds.

The resulting energy density profiles are shown in Figure 1, where
energy density in J / em' is plotted versus radius in meters, scaled to
a I-kg charge, at the following times: 1.000, 1.424, 1.725, 2.514,
3.413, 5.918, and 8.532 ms. A curve showing peak energy density ver­
sus radius is also shown.

To validate this method of computing energy densities, the data
presented in Figure 1 were integrated over the full ,sphere of the blast
wave. The results obtained are as follows:

Time (ms) Energy (141)

1.000 5.097

1.424 4.848

1.725 5.351

2.514 4.218

3.413 (5.282)

5.918 (3.488)

8.532 (2.835)

The energy values shown in parentheses do not represent total energy
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because energy density was not defined over the full range of radii be­
tween the explosion center and the primary shock front. The results of
the other integrations, which were made over the full range of radii,
are total energies varying from 4.218 to 5.351 MJ with a mean value of
4.878 MJ. These results should be compared to the total energy yield
of 1 kg TNT, which is thought to be in the range from 4.45 to 4.85 MJ.

The ,expected yield from 1 kg TNT was estimated using Brode's fig­
ures (from Jones and Miller, 1948) of 247.9 kcal/mole at a loading den­
sity of 1.5 g/cm 3 and molecular weight of 234g. These figures give
a yield for TNT of 1. 06 kcal/g, which can be compared to 1.16 kcal/ g
used by Dewey (1964), based on data from ,Cook (1958) for a loading
density of 1.57 g/cm 3 • These two figures, as lower and upper limits,
and a conversion rate of 4185 J/kcal, put the yield of 1 kg TNT be­
tween 4.45 and 4.85 MJ. For comparison, the yield from 1 kg Pentolite
(SO/SO) is approximately 5.10 MJ, and the yield from 1 kg TNT computed
using the relation W= a 3p , a = 3.966m, is 6.32MJ.

a

4. PRIMARY WAVE FROM THE LOWER CHARGE: DIPOLE WEST/II

DIPOLE WEST Shot 11 involved the simultaneous detonation of two
490-kg spheres of Pentolite over a rough ground surface on 8 November
1973. The lower charge was positioned 25 feet above the ground and
the upper charge 50 feet above the lower one. In this way, the spheri­
cal primary blast wave from the lower charge was reflected both from
the ground surface and from the corresponding blast wave generated by
the upper charge along an interaction plane midway between the two
charges at a distance above the lower charge equal to the height of
the lower charge above the ground. One Objective of the experiment
was to compare the Mach stern blast wave over the ground surface with
the corresponding Mach stern wave below the interaction plane.

The region in space affected by the spherical primary wave from
the lower charge is shown in Figure 2. The plane of the figure is one
containing the two charge centers and ground zero. The x-coordinate
is measured horizontally'from ground zero and the y-coordinate verti­
cally upward from ground zero. The distance units have been scaled to
a I-kg charge and standard atmospheric conditions, as described by
Dewey et al (1978b). The region of the primary wave is bounded by the
paths of the two triple points, that is, the trajectories of the junc­
tions of the primary shock with the reflected shocks from the ground
and the interaction plane.

The positions of the primary shock front and its upper and lower
reflections at times 1.0,1.4,1.7,2.5 and 3.4ms are also shown in
Figure 2. These times were chosen to correspond to the times at which
theoretical results were computed from Brode's data.

Particle trajectory analysis using smoke puff flow tracers in the
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plane of Figure 2 has provided a grid of measured particle velocities,
gas densities, and hydrostatic overpressures in a region which overlaps
the region of the primary wave between the triple point paths (Dewey et
aI, 1978b). These data were used to compute a regular grid of energy
density values. Energy densities computed in the region of the primary
wave are plotted in Figures 3 to 7 as functions of radial distance from
the lower charge center at each of the times indicated in Figure 2.
The solid curves shown in Figures 3 to 7 are the profiles computed using
Brode's theoretical data. The vertical line represents the shock front
position at the indicated time. The peak value of the energy density
at the shock front (the height of the vertical line) was computed using
the Rankine-Hugoniot equations and the measured shock velocity which
were obtained as part of the particle trajectory analysis (Dewey et aI,
1978b).

A position within the region bounded by the triple point paths may
have been traversed by the primary shock only, or the primary shock and
one reflected shock, or the primary shock and two reflected shocks. In
Figures 3 to 7, the points corresponding to these conditions are repre­
sented as solid, or open containing a short vertical line, or open con­
taining a cross, respectively. Only the solid points should be com­
pared with the curves computed using Brode's data.

The fields of energy density may be conceptualized as three dimen­
sional surfaces over the x-y plane, as described by Dewey et al (1977a).
Cross-sections of these surfaces along a line y; O.gm (the charge
height) are indicated by dashed lines in Figures 5 to 7.

The scatter in the energy density values computed in the regions
behind one or two reflected shocks (Figures 5 to 7) is to be expected
because the flows in these regions do not have the spherical symmetry
which was assumed when the data were plotted versus radial distance
from the charge center. Additional scatter within each region, includ­
ing the region affected by the spherical primary wave only (Figures 3
to 7), arises from scatter in the gas density calculations, which is
inherent in the method used to derive gas density from observed par­
ticle trajectories. Attempts are being made to improve this method of
deriving gas density.

5. ANOTHER PRIMARY WAVE: FE589/6

One of the difficulties encountered in deriving energy density in
the primary wave from the lower charge in DIPOLE WEST Shot 11 is the
scarcity of data which have been unaffected by a reflected wave, es­
pecially at later times. A particle trajectory analysis was therefore
made of another explosion, FE589 Shot 6, which offered larger amounts
of data in the primary wave unaffected by a reflected shock.

FE589 Shot 6 was a lOOO-ib sphere of TNT detonated on 17 October
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1969 at a height of 60 feet. Because of the large charge height and
tlH' positioning of the smoke puff grid, a relatively large amount of
particle trajectory data was obtained for the primary blast wave.
Also, since there was only one charge, there was only one reflection.

Profiles of energy density in the 'primary wave from FE589 Shot 6
are shown in Figures 8 to 11 at times 2.514, 3.413, 5.918 and 8.532 ms,
along with the curves computed using Brode's data at those times. The
profiles shown in Figures 8 to 11 are similar to those shown in Fig­
ures 3 to 7 for DIPOLE WEST Shot 11, with the solid points representing
energy density at positions affected by only the primary wave, and the
open points with a small vertical line representing energy density at
positions affected by both the primary and the reflected wave. With
the exception of the open points in Figure 11, the values plotted in
Figures 8 to 11 were derived for a region which would be expected to
have spherical S,"~etry, wid the scatter of the results is primarily
caused by the lack of precision in determining gas density from the
particle trajectories. The shock front positions and peak energy den­
sities shown in Figures 8 to 11 were computed from shock front trajec­
tory data obtained using refractive image analysis. The relationship
between the peak energy densities computed using refractive image anal­
ysis and those computed from times of arrival derived using particle
trajectory analysis is shown in Figure 12, along with the same curve
derived from Brode's data.

6. MACH STEM ENERGY PROFILES: DIPOLE WEST/II

Energy profiles of the Mach stem blast waves above the ground sur­
face and beneath the interaction plane between the two charges are pre­
sented in Figures 13 to 17. In these figures, energy density is plot­
ted against a radial distance which is measured horizontally from the
axis through the two charge centers and ground zero, at heights of
0.4 m above the ground and 0.4 m below the interaction plaI)e. Plotting
the energy data in this way assumes that the flows within the Mach stem
blast waves are cylindrically radial, an assumption which is known to
be only approximate, as discussed by Dewey etal (1977a). The profiles
for the two blast waves in each figure are plotted at different times
chosen so that the shock fronts were at the same radial distance. This
was necessary because the shock wave beneath the interaction plane was
traveling faster than the one above the ground. Thus, for example, in
Figure 13 the shocks are both at a radius of 3.52 m, which occurred at
4.8 ms for the interaction Mach stem, and at 5.0 ms for the ground Hach
stem.

The peak energy density at each shock front was calculated using
the measured shock velocities, and for all values of shock radius it was
greater for the shock below the interaction plane than for the shock
at the ground surface. The exact relationship between the strength of
the Mach stem beneath the interaction plane and the Mach stem at tl,e
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ground surface is shown in Figures 18 and 19, as determined using re­
fractive image analysis and particle trajectory analysis, respectively.

The Mach stem shock below the interaction plane is apparently
stronger than the Mach stem shock over the ground surface when peak
energy densities at the shock fronts are compared. Such a difference
is not apparent when the energy density profiles of the waves behind
the shock fronts are compared (Figures 13 to 17). The energy densities
in the wave above the ground surface are, if anything, greater than
those in the wave beneath the interaction plane.

Values of the integral 2Tr (R rE(r)d r , where r is the radiusJra 0

marked by an arrow in Figures 13 to 17, and R is the shock front radi­
us, are as follows:

INTEGRATED ENERGY DENSITY (MJ/m)

Figure Interaction Ground
Number Mach Stem Mach Stem

13 3.00 2.90

14 3.06 3.78

15 3.45 4.11

16 3.52 4.72

17 3.55 5.29

If these integrated values are taken as true measures of the total en­
ergy in megaJoules per meter of distance from the reflecting surfaces,

, over those portions of the waves indicated in Figures 13 to 17, then
indeed the wave over the ground surface appears to be the more ener­
getic. This would be consistent with the results reported by Dewey et
al (1975) and Keefer et al (1975), in which it was shown that, although
the peak hydrostatic pressure was always less above the ground than
close to the interaction plane at the same radial distance, the pres­
sure impulse, namely the integral of the pressure-time history, was
always greater in the ground Mach stem.

The integrations of energy listed above also suggest that in the
leading portion of the ground Mach wave, che total energy may increase
with time, whereas in the corresponding portion of interaction Mach
wave, the total energy remains more or less constant.

Unfortunately, the scatter in the values of energy density plot­
ted in the profiles is such that no firm conclusions can be drawn. As
discussed previously, this scatter arises primarily because of the poor
spatial resolution of the density calculated from the particle trajec­
tories, and it is hoped that techniques can be developed to improve this
feature of the analysis.

14



7. CONCLUSIONS

This report describes the first attempt to calculate the energy
density throughout a blast wave using experimentally determined proper­
ties of the gas, viz, density, pressure, and particle velocity. The
energy density is the most complete descriptor of a blast wave since
it involves all of these physical properties. In addition, an integra­
tion of the energy density profile should produce a total energy equiv­
alent to that released by the explosion, less any energy losses by such
means as thermal radiation and seismic effects. The integration for
the total energy release can thus provide a means of checking all pre­
viously computed results.

Attempts were made to validate the method used to calculate the
energy densities presented in this report, but these attempts were not
entirely successful. The most complete theoretical description of a
blast wave from a spherical chemical source is that given for TNT by
Brode (1957). Energy density profiles were calculated from Brode's
data at several times and integrated to give a total energy yield.
Using an arbitrary value of 1 em for Brode's scaling factor, the energy
profile was integrated at four different times to give values of total
energy in the range from 0.06761 J to 0.08576 J with a mean of 0.0782 J.
These figures may be compared with Brode's supposed energy yield of
0.1015 J. The 25-percent difference may possibly be accounted for by
the fact that, in the integration, a constant ratio of specific heats
was used, and no allowance was made for varying the equation of state
of the detonatio~ products. Brode found it necessary to add energy to
his equation of state to overcome this difficulty.

As a final approach to the problem of validation, Brode's data
were scaled so that they would describe a I-kg charge of TNT in stan­
dard atmospheric conditions, using an empirical scaling factor obtained
by matching the shock front pressure-distance relationship of Brode to
that determined experimentally for TNT. Integrating these data gave a
mean energy yield of 4.878MJ (±O.566) , which may be compared with en­
ergies in the range from 4.45 to 4.85 MJ that were obtained from vari­
ous other sources as the expected energy release from 1 kg TNT.

These studies bring to light the limitations in our knOWledge of
the absolute energy release from a chemical explosive. It appears,
however, that the methods described here for determining the energy
density profile in a blast wave, and its integration, are valid and
provide answers which are correct to better than order-of-magnitude
accuracy.

The energy density profile was determined in the primary shock
wave from the lower charge of DIPOLE WEST Shot 11. There was a con­
siderable scatter in the results because many were for positions also
affected by one or two reflected shocks. The results for positions
affected only by the primary shock show reasonable agreement with the
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energy profiles calculated from Brode's data.

In order to obtain results for a primary shock region less affect­
ed by reflected shocks, a similar analysis was carried out for the
blast wave from a 1000-lb TNT charge detonated at a height of 60 feet
(FE589/6). These results show similar agreement with the energy den­
sity profiles computed using Brode's data, but again contain a large
amount of scatter. It is believed that this scatter arises primarily
from the method used to determine gas density from the experimentally
observed particle trajectories, and it is hoped that the prerequisite
calculation can be improved.

The comparisons of the energy density profiles in the Mach stem
regions of DIPOLE WEST Shot 11, shown in Figures 13 to 17, are not en­
tirely conclusive due to the scatter in the results. As was previously
known from the shock front analyses, the Mach stem shock close to the
ground is always weaker than the Mach stem shock at the interaction
plane, at equal distances from the central axis of symmetry. However,
as previously reported, the pressure impulses obtained by integrating
pressure gauge signals are always greater close to the ground. This
last result is confirmed by the present results in that the integrated
energy densities for the profiles shown in Figures 13 to 17 are always
greater in the ground Mach stem than in the interaction Mach stem.
This is a surprising result in that it might be eApected that there
would be some energy losses to the ground. A possible explanation may
come from the fact that the region below the interaction plane in the
dipole configuration of the charges is no longer symmetrical beyond a
certain horizontal distance (a scaled horizontal distance of approxi­
mately 4.2m). Referring to Figure 2, the reflected shock beneath the
upper triple point path will be reflected from the ground and pass
through the trailing part of the Mach stem wave above the ground, ad­
ding energy to this wave. The corresponding reflected shock above the
lower triple point path will not encounter an equivalent wave from the
upper charge and will therefore pass through the interaction plane
without adding energy to the Mach stem wave below the interaction plane.

These results cannot be considered conclusive at the present time,
however, since the accuracy of the measurements may not warrant any
such distinction between the two sets of energy profiles; and it may
be only coincidence that the integrals of the energy profiles along
the ground were greater than those beneath the interaction plane in
each of the five cases considered. '

It is recommended that attempts be made to resolve this question,
by improving the accuracy of the energy calculations and by further
studies of the energy density profiles in these and other blast waves.
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